
Vision HDL Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Release Notes
© COPYRIGHT 2015–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2021a

External Memory Modeling Examples: Model and deploy streaming video
algorithms that require random access to memory (Requires SoC
Blockset) . 1-2

Multipixel-Multicomponent Streaming: Implement Pixel Stream Aligner,
Pixel FIFO, and ROI Selector blocks for high-frame-rate color video
. 1-2

Computer Vision Toolbox Support Package for Xilinx Zynq-Based
Hardware is moved to Vision HDL Toolbox Support Package for Xilinx
Zynq-Based Hardware . 1-2

MPSoC Prototyping: Target designs to Xilinx Zynq UltraScale+ MPSoC
ZCU102 Evaluation Kit (requires Vision HDL Toolbox Support Package
for Xilinx Zynq-Based Hardware) . 1-2

R2020b

Harris Corner Detector Block and System Object: Detect features using
intersecting edges algorithm . 2-2

Region of Interest (ROI) Resource Sharing: Share hardware resources
and streaming control signals between vertically-aligned regions 2-2

Blob Analysis Example: Detect and label connected components in
streaming video . 2-2

Multipixel and Multicomponent Streaming: Implement Lookup Table and
Pixel Stream Aligner for high-frame-rate or color video 2-2

R2020a

Corner Detector Block and System Object: Detect features using FAST
algorithm . 3-2

iii

Contents

Line Buffer with No Padding: Specify option to not add padding for blocks
that use line buffer memory . 3-2

Resizing Example: Downsize an image frame by a specified factor 3-2

Fog Rectification Example: Enhance hazy images to improve clarity 3-2

Stereo Rectification Example: Align pairs of images from stereo cameras
. 3-2

Multicomponent Multipixel Streaming: Process high-frame-rate or high-
resolution color video . 3-3

Multipixel Streaming: Perform binary morphology on high-frame-rate or
high-resolution video . 3-3

R2019b

Multipixel Streaming: Process high-frame-rate or high-resolution video
on FPGA . 4-2

External Memory Modeling and Debugging: Simulate and deploy memory
interfaces and measure performance (requires SoC Blockset) 4-2

Adaptive Histogram Equalization: Preprocess images to improve contrast
. 4-2

Acceleration for System objects . 4-2

Increased histogram sizes . 4-3

Removal of MATLAB Compiler support . 4-3

R2019a

Low-Light Enhancement Example: Enhance low-light color images to
improve visibility . 5-2

Model and deploy algorithms that use an AXI master external memory
interface (requires Computer Vision System Toolbox Support Package
for Xilinx Zynq-Based Hardware) . 5-2

Horizontal and Vertical Counter Block: Count active lines and pixels of a
pixel stream . 5-2

Increased kernel size limits for Image Filter block 5-2

iv Contents

R2018b

Programmable 2-D FIR Coefficients: Use an input port to load filter
coefficients at the start of each frame . 6-2

Image Pyramid Example: Generate resized pixel streams from an input
pixel stream . 6-2

FAST Corner Detection Example: Detect corners using the features-from-
accelerated-segment test (FAST) algorithm . 6-2

Stereo Disparity Example: Compute disparity between left and right
stereo camera images . 6-2

External Memory Modeling Examples: Model and deploy algorithms that
use an external frame buffer (requires Computer Vision System Toolbox
Support Package for Xilinx Zynq-Based Hardware) 6-2

Improved Line Buffer . 6-3

R2018a

Pothole Detection Example: Overlay a centroid marker and text label to
identify potholes . 7-2

Pixel Stream FIFO Block: Convert bursty video sources to contiguous
lines . 7-2

Separable Filter Example: Use the Line Buffer block to implement a
hardware-efficient custom filter . 7-2

R2017b

Bilateral Filter Block and System Object: Apply a Gaussian filter with
edge preservation . 8-2

Birds-Eye View Block and System Object: Transform a front-facing
camera view to an overhead view . 8-2

Line Buffer Block and System Object: Store a sliding window of pixels for
developing custom filter algorithms . 8-2

Cartoon Image Abstraction Example: Extract features using the Bilateral
Filter block . 8-2

v

R2017a

Pixel Stream Aligner: Synchronize two video streams for comparison or
overlay . 9-2

Corner Detection Example: Overlay detected corners using the Pixel
Stream Aligner . 9-2

Lane Detection Example: Process 480p video and compute ego lanes in
FPGA . 9-2

R2016b

Lane Detection Example: Reference design demonstrating FPGA
acceleration of a lane detection algorithm . 10-2

Measure Timing Block and System Object: Measure video signal timing
from the pixel control bus . 10-2

AXI4-Stream Video Interface: Generate an HDL IP core with an AXI4-
Stream Video interface for your video algorithm (requires HDL Coder)
. 10-2

Computer Vision on Xilinx Zynq-Based Hardware: Generate and verify
vision algorithms on a prototype board connected to a live HDMI video
stream . 10-2

Optimized grayscale morphology using Van Herk algorithm 10-3

Simpler way to call System objects . 10-3

R2016a

ROI Selector: Select a region of interest from a streaming video source
. 11-2

Grayscale Morphology: Perform dilation, erosion, opening, and closing
operations on grayscale inputs . 11-2

Larger frame size for statistics computations . 11-2

vi Contents

R2015b

Corner Detection Example: Detect intersecting edges with the Harris
algorithm . 12-2

MATLAB Compiler Integration: Generate standalone executables for
System objects . 12-2

HDL code generation for structure arguments in MATLAB 12-2

Improved line buffer performance . 12-2

R2015a

Video synchronization signal controls for handling nonideal timing and
resolution variations . 13-2

Configurable frame rates and sizes, including 60FPS for high-definition
(1080p) video . 13-2

Frame-to-pixel and pixel-to-frame conversions to integrate with frame-
based processing capabilities in MATLAB and Simulink 13-2

Image processing, video, and computer vision algorithms with a pixel-
streaming architecture, including image enhancement, filtering,
morphology, and statistics . 13-2

Implicit on-chip data handling using line memory 13-2

Support for HDL code generation and real-time verification 13-2

vii

R2021a

Version: 2.3

New Features

Bug Fixes

Compatibility Considerations

1

External Memory Modeling Examples: Model and deploy streaming
video algorithms that require random access to memory (Requires
SoC Blockset)
The “Vertical Video Flipping Using External Memory” example shows how to use SoC Blockset™
blocks to model random-access external memory for streaming vision applications. Then, to generate
code for FPGA and processor designs, and deploy the design on a board, it uses the SoC Builder
tool.

The “Contrast Limited Adaptive Histogram Equalization with External Memory” example shows how
to use the SoC Blockset workflow to model frame buffer memory for a CLAHE design.

Multipixel-Multicomponent Streaming: Implement Pixel Stream
Aligner, Pixel FIFO, and ROI Selector blocks for high-frame-rate color
video
The Pixel Stream Aligner, Pixel Stream FIFO, and ROI Selector blocks now support streams that are
both multicomponent and multipixel.

The HDL implementation replicates the algorithm for each pixel and component in parallel.

The blocks support input and output matrices of NumPixels-by-NumComponents pixels. The ctrl
ports remain scalar, and the control signals in the pixelcontrol bus apply to all pixels in the
matrix.

You can simulate System objects with a multipixel streaming interface, but they are not supported for
HDL code generation. Use the equivalent blocks to generate HDL code for multipixel algorithms.

Computer Vision Toolbox Support Package for Xilinx Zynq-Based
Hardware is moved to Vision HDL Toolbox Support Package for Xilinx
Zynq-Based Hardware
Starting in R2021a, the Computer Vision Toolbox™ Support Package for Xilinx® Zynq®-Based
Hardware is named Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware. To use this
support package in R2021a, you must have the Vision HDL Toolbox product. For more information,
see “Vision HDL Toolbox Supported Hardware”.

MPSoC Prototyping: Target designs to Xilinx Zynq UltraScale+ MPSoC
ZCU102 Evaluation Kit (requires Vision HDL Toolbox Support Package
for Xilinx Zynq-Based Hardware)
Target your video processing algorithms to the Xilinx Zynq UltraScale+™ MPSoC ZCU102 Evaluation
Kit, with an Avnet® FMC-HDMI-CAM module. In step 1.1 of the HDL Workflow Advisor, set the Target
platform parameter to ZCU102 FMC-HDMI-CAM.

R2021a

1-2

R2020b

Version: 2.2

New Features

Bug Fixes

2

Harris Corner Detector Block and System Object: Detect features
using intersecting edges algorithm
The Corner Detector block now provides a choice between the FAST algorithm and the Harris and
Stephens interconnecting edges algorithm. See Harris Corner Detection.

Region of Interest (ROI) Resource Sharing: Share hardware resources
and streaming control signals between vertically-aligned regions
The ROI Selector block provides an option to share hardware resources when selecting vertically
aligned regions. Regions in the same column share the same pixelcontrol bus output.

Select the Reuse output ports for vertically aligned regions checkbox, and provide a set of
regions that are aligned in columns and do not overlap vertically within each column. You can specify
up to 1024 regions per column. To divide a frame into tiled regions that are compatible with vertical
reuse, use the visionhdlframetoregions function.

Blob Analysis Example: Detect and label connected components in
streaming video
The Blob Analysis example shows how to implement a single-pass 8-way connected component
labeling algorithm, and perform blob analysis to give the centroid, bounding box, and area of each
blob. The model supports up to 1080p@60fps video.

Multipixel and Multicomponent Streaming: Implement Lookup Table
and Pixel Stream Aligner for high-frame-rate or color video
You can now process 4 or 8 pixels on each cycle when using the Lookup Table and Pixel Stream
Aligner blocks. These blocks now also accept multicomponent streams, but you cannot use
multicomponent and multipixel together.

The HDL implementation replicates the algorithm for each pixel or component in parallel.

For multipixel streaming, the blocks support input and output column vectors of 4 or 8 pixels. For
multicomponent streaming, the blocks support input and output row vectors of 2, 3, or 4 components.
In both cases, the ctrl ports remain scalar, and the control signals in the pixelcontrol bus apply to
all pixels in the vector.

You can simulate System objects with a multipixel streaming interface, but they are not supported for
HDL code generation. Use the equivalent blocks to generate HDL code for multipixel algorithms.

R2020b

2-2

https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ug/corner-detection.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/visionhdlframetoregions.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ug/blob-analysis.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/lookuptable.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2020b/visionhdl/ref/pixelstreamaligner.html

R2020a

Version: 2.1

New Features

Bug Fixes

3

Corner Detector Block and System Object: Detect features using FAST
algorithm
The Corner Detector block detects corners using the features-from-accelerated-segment test (FAST)
algorithm. You can specify a minimum contrast threshold as a parameter or port and select from
three metrics that determine a corner: 5 out of 8, 7 out of 12, or 9 out of 16 pixels. These metrics
specify how many pixels in a circle of pixels must meet the minimum contrast for the center pixel to
be considered a corner.

Line Buffer with No Padding: Specify option to not add padding for
blocks that use line buffer memory
You can now configure the Line Buffer block and blocks that use an internal line buffer to not add
padding around the boundaries of the active frame. This option reduces the hardware resources used
by the block and the blanking required between frames but affects the accuracy of the output pixels
at the edges of the frame. To use this option, set the Padding method parameter to None. For an
example, see Increase Throughput with Padding None.

This change affects these blocks:

• Line Buffer
• Bilateral Filter
• Corner Detector
• Edge Detector
• Image Filter
• Median Filter
• Binary morphology blocks: Closing, Dilation, Erosion, and Opening

Resizing Example: Downsize an image frame by a specified factor
The Image Resize example shows how to downsample an image using the bilinear, bicubic, or
Lanczos-2 algorithm.

Fog Rectification Example: Enhance hazy images to improve clarity
The Fog Rectification example removes fog from color input images, and then enhances the contrast
of the defogged image by stretching the range of intensity values.

Stereo Rectification Example: Align pairs of images from stereo
cameras
The Stereo Image Rectification example undistorts and rectifies pairs of stereo input images.

R2020a

3-2

https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ug/padding-none-example.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/cornerdetector.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/medianfilter.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/closing.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/dilation.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/erosion.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/opening.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ug/image-downsize.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ug/fog-rectification.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ug/stereoscopic-rectification.html

Multicomponent Multipixel Streaming: Process high-frame-rate or
high-resolution color video
The Frame To Pixel and Pixel To Frame blocks now support multicomponent multipixel streams. The
MultiPixel-MultiComponent Video Streaming example shows how to use a multipixel and
multicomponent pixel stream to process a high-resolution color image.

Multipixel Streaming: Perform binary morphology on high-frame-rate
or high-resolution video
You can process 4 or 8 pixels on each cycle when using these binary morphology blocks: Closing,
Dilation, Erosion, and Opening.

These blocks now support input and output vectors of 4 or 8 pixels. The ctrl ports remain scalar, and
the control signals in the pixelcontrol bus apply to all pixels in the vector.

You can simulate System objects with a multipixel streaming interface, but they are not supported for
HDL code generation. Use the equivalent blocks to generate HDL code for multipixel algorithms.

3-3

https://www.mathworks.com/help/releases/R2020a/visionhdl/ug/multipixel-multicomponent-example.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/closing.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/dilation.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/erosion.html
https://www.mathworks.com/help/releases/R2020a/visionhdl/ref/opening.html

R2019b

Version: 2.0

New Features

Bug Fixes

Compatibility Considerations

4

Multipixel Streaming: Process high-frame-rate or high-resolution
video on FPGA
To support high-frame-rate or high-resolution video processing, such as 4k UHD, the Vision HDL
Toolbox streaming video interface can now process 4 or 8 pixels on each cycle. For an example of how
to use this feature, see Filter Multipixel Video Streams.

When you configure the Frame To Pixels and Pixels To Frame blocks, set the Number of pixels
parameter to 4 or 8. With this setting, the output of the Frame To Pixels block is a vector of 4 or 8
pixel values on each time step.

The Image Filter, Edge Detector, and Median Filter blocks now support input and output vectors of 4
or 8 pixels. The ctrl ports remain scalar, and the control signals in the pixelcontrol bus apply to
all pixels in the vector. The Line Buffer block can accept an input vector of 4 or 8 pixels and returns a
KernelHeight-by-NumberOfPixels matrix.

Video formats for multipixel streams must have horizontal dimensions divisible by the Number of
pixels parameter value. These horizontal dimensions are set by the following parameters: Active
pixels per line, Total pixels per line, Front porch, and Back porch. Standard video protocols
480p, 720p, 1080p, and 4k UHD support either 4 or 8 pixels at a time.

You can simulate System objects with a multipixel streaming interface, but they are not supported for
HDL code generation. Use the equivalent blocks to generate HDL code for multipixel algorithms.

External Memory Modeling and Debugging: Simulate and deploy
memory interfaces and measure performance (requires SoC Blockset)
For designs that require external memory, such as designs that buffer an entire image frame, you can
use SoC Blockset to model a memory controller and multiple memory channels. This model calculates
and visualizes memory bandwidth, burst counts, and transaction latencies in simulation. You can
generate HDL code for the memory controller and channels by using the SoC Builder app. You can
also deploy an AXI memory interconnect monitor on your FPGA, which can return memory
transaction information for debugging and visualization in Simulink®. See the Histogram Equalization
Using Video Frame Buffer (SoC Blockset) and Analyze Memory Bandwidth Using Traffic Generators
(SoC Blockset) SoC Blockset examples.

For an overview of memory modeling options with Computer Vision System Toolbox™ Support
Package for Xilinx Zynq-Based Hardware or SoC Blockset, see Modeling External Memory.

Adaptive Histogram Equalization: Preprocess images to improve
contrast
The FPGA Implementation of Contrast Limited Adaptive Histogram Equalization example shows how
to implement adaptive histogram equalization for hardware. This algorithm clips the peak histogram
values and redistributes them across neighboring tiles by using a bilinear interpolation filter.

Acceleration for System objects
You can speed up calls to Vision HDL Toolbox System objects by enabling a simulation mode that uses
code generation. Use this command to configure a System object for code generation before calling
the object.

R2019b

4-2

https://www.mathworks.com/help/releases/R2019b/visionhdl/ug/multipixel-filtering-example.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/frametopixels.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/pixelstoframe.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/medianfilter.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2019b/soc/ug/histogram-equalization.html
https://www.mathworks.com/help/releases/R2019b/soc/ug/histogram-equalization.html
https://www.mathworks.com/help/releases/R2019b/soc/ug/memory-traffic-generator.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ug/modeling-external-memory.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/examples/contrast-adaptive-histogram-equalization.html

myobj.simulateUsing('Code generation');

For an example, see Edge Detection Using Sobel Method on the visionhdl.EdgeDetector
reference page.

Increased histogram sizes
You can now configure the Histogram block to have 2048 or 4096 histogram bins.

Removal of MATLAB Compiler support
Vision HDL Toolbox System objects and functions are no longer deployable with MATLAB®

Compiler™.

4-3

https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/visionhdl.edgedetector-system-object.html#butnbdm
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/visionhdl.edgedetector-system-object.html
https://www.mathworks.com/help/releases/R2019b/visionhdl/ref/histogram.html

R2019a

Version: 1.8

New Features

Bug Fixes

5

Low-Light Enhancement Example: Enhance low-light color images to
improve visibility
The FPGA Implementation of Low Light Enhancement example shows how to implement a hardware-
targeted haze-removal technique for low-light images.

Model and deploy algorithms that use an AXI master external memory
interface (requires Computer Vision System Toolbox Support Package
for Xilinx Zynq-Based Hardware)
The FPGA reference design now supports an AXI master interface to external memory. This interface
provides read and write access to any address. See Image Rotation with Zynq-Based Hardware
(Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware).

The Image Rotation with Zynq-Based Hardware example provides a simplified simulation model of the
external memory interface. When mapping the physical ports of the reference design, map the
memory interface signals to the target AXI master read and write interfaces. For details, see Model
External Memory Interfaces (Computer Vision Toolbox Support Package for Xilinx Zynq-Based
Hardware).

Horizontal and Vertical Counter Block: Count active lines and pixels of
a pixel stream
The HV Counter block returns active-line and active-pixel counts that indicate the current position in
a video frame or region-of-interest.

Increased kernel size limits for Image Filter block
The Image Filter block now allows for a coefficient kernel with up to 64-by-64 elements. Previously,
the block restricted the coefficient kernel size to 16-by-16 elements.

R2019a

5-2

https://www.mathworks.com/help/releases/R2019a/visionhdl/examples/low-light-enhancement.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/xilinxzynqbasedvision/examples/image-rotation-with-zynq-based-hardware.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/xilinxzynqbasedvision/modeling-external-memory-interfaces.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/xilinxzynqbasedvision/modeling-external-memory-interfaces.html
https://www.mathworks.com/help/releases/R2019a/visionhdl/ref/hvcounter.html
https://www.mathworks.com/help/releases/R2019a/visionhdl/ref/imagefilter.html

R2018b

Version: 1.7

New Features

Bug Fixes

Compatibility Considerations

6

Programmable 2-D FIR Coefficients: Use an input port to load filter
coefficients at the start of each frame
The Image Filter block now accepts coefficients from an input port. Each dimension of the matrix
must have at least 2 and no more than 16 elements. The block samples the values from the coeff port
at the start of a frame only and ignores any changes within a frame.

Compatibility Considerations
In previous releases, you could specify a row vector of coefficients, that is, a matrix of 1-by-N
elements. Now, the coefficient matrix must have at least 2 elements in each dimension.

Image Pyramid Example: Generate resized pixel streams from an
input pixel stream
The Image Pyramid for FPGA example produces a set of resized pixel streams from an input pixel
stream. The model generates smaller streams by successively down-sampling the input stream using
a Gaussian filter. Image pyramid algorithms are used in many feature detection and classification
algorithms, including convolutional neural networks (CNN).

FAST Corner Detection Example: Detect corners using the features-
from-accelerated-segment test (FAST) algorithm
The FAST Corner Detection example shows how to find corners in grayscale images using a metric
based on 12 out of 16 pixels in a circle. The algorithm also implements nonmaximal suppression to
find the best corners. Corner detection is the basis of many image-point-matching algorithms, such as
creating panoramas, motion tracking and stabilization, and stereo vision.

Stereo Disparity Example: Compute disparity between left and right
stereo camera images
The FPGA Implementation of Stereo Disparity using Semi-Global Block Matching example shows how
to measure disparity between pairs of stereo camera images by using the semi-global block matching
(SGBM) algorithm. This algorithm is similar to the disparity function in Computer Vision System
Toolbox.

External Memory Modeling Examples: Model and deploy algorithms
that use an external frame buffer (requires Computer Vision System
Toolbox Support Package for Xilinx Zynq-Based Hardware)
The support package reference design now supports adding an external memory interface to a frame
buffer. The frame buffer stores a single frame and returns that frame when requested. The frame
buffer maintains the streaming video control signals for the output frame. The reference design
implements the frame buffer interface using 2-Channel AXI Video DMA.

The Histogram Equalization with Zynq-Based Hardware (Computer Vision System Toolbox Support
Package for Xilinx Zynq-Based Hardware) and Lane Detection with Zynq-Based Hardware (Computer
Vision System Toolbox Support Package for Xilinx Zynq-Based Hardware) examples include a

R2018b

6-2

https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/examples/imagepyramid.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/examples/fast-corner-detection.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/examples/stereoscopic-disparity.html
https://www.mathworks.com/help/releases/R2018b/vision/ref/disparity.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/xilinxzynqbasedvision/examples/histogram-equalization-with-zynq-based-hardware.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/xilinxzynqbasedvision/examples/lane-detection-with-zynq-based-hardware.html

simplified simulation model of an external memory interface. When you map the physical ports of the
reference design, select the frame buffer target interface for the signals that connect to the memory
interface model. For details, see Model External Memory Interfaces (Computer Vision System Toolbox
Support Package for Xilinx Zynq-Based Hardware).

Improved Line Buffer
The line buffer now handles bursty data, that is, noncontiguous valid signals within a pixel line. This
implementation uses fewer hardware resources due to improved padding logic and native support for
kernel sizes with an even number of lines. This change affects the Line Buffer block and these blocks
that use an internal line buffer:

• Bilateral Filter
• Demosaic Interpolator
• Edge Detector
• Image Filter
• Median Filter
• Binary morphology blocks: Closing, Dilation, Erosion, and Opening
• Grayscale morphology blocks: Grayscale Closing, Grayscale Dilation, Grayscale Erosion, and

Grayscale Opening also use the new line buffer architecture. However, when you use a 2-D kernel
of all 1s or a row-vector kernel, noncontiguous valid signals within a pixel line are not supported.
As a workaround, use the Pixel Stream FIFO block to buffer an input stream and return image
lines that have contiguous valid pixels.

This resource and performance data is the synthesis results from the generated HDL targeted to a
Xilinx Zynq-7000 ZC706 FPGA. The synthesis results were generated using Xilinx Vivado® 2017.4.
The Line Buffer block is configured with symmetric padding and a line buffer size of 2048. The table
shows both odd and even neighborhood sizes.

 5-by-5 Kernel,
R2018b

5-by-5 Kernel,
R2018a

6-by-6 Kernel,
R2018b

6-by-6 Kernel,
R2018a

Clock frequency 300 MHz, 0.5 slack 300 MHz, 0.55
slack

300 MHz, 0.31
slack

250 MHz,0.43
slack

LUT 647 673 790 901
Slice registers 1452 1068 1844 1368
BRAM 4 4 5 5.5

Compatibility Considerations
The latency of the line buffer is now reduced by a few cycles for some configurations. You might need
to rebalance parallel path delays in your models that contain a Line Buffer block or blocks that have
an internal line buffer. A best practice is to synchronize parallel paths in your models using the pixel
stream control signals rather than inserting a specific number of delays.

6-3

https://www.mathworks.com/help/releases/R2018b/supportpkg/xilinxzynqbasedvision/modeling-external-memory-interfaces.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/demosaicinterpolator.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/edgedetector.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/imagefilter.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/medianfilter.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/closing.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/dilation.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/erosion.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/opening.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2018b/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/ref/pixelstreamfifo.html

R2018a

Version: 1.6

New Features

Bug Fixes

7

Pothole Detection Example: Overlay a centroid marker and text label
to identify potholes
This example extends the previous cartooning example to include calculating a centroid and
overlaying a centroid marker and text label on detected potholes. See Pothole Detection.

Pixel Stream FIFO Block: Convert bursty video sources to contiguous
lines
The Pixel Stream FIFO block rebuffers a video stream to create image lines that have contiguous
valid pixels. Use this block to buffer bursty video sources, such as DMA data, or a Camera Link®

source that has valid pixels every N clock cycles.

For an example that shows how to use the Pixel Stream FIFO block on such sources, see Buffer
Bursty Data Using Pixel Stream FIFO Block.

Separable Filter Example: Use the Line Buffer block to implement a
hardware-efficient custom filter
This example shows how to design a separable filter using the Line Buffer block. Separable filters use
fewer hardware resources than equivalent 2-D filters. The example explains how to determine if a
filter is separable, and how to choose fixed-point data types. See Using the Line Buffer to Create
Efficient Separable Filters.

R2018a

7-2

https://www.mathworks.com/help/releases/R2018a/visionhdl/examples/pothole-detection.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/ref/pixelstreamfifo.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/examples/buffer-bursty-data-using-pixel-stream-fifo-block.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/examples/buffer-bursty-data-using-pixel-stream-fifo-block.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/examples/using-line-buffer-create-separable-filter.html
https://www.mathworks.com/help/releases/R2018a/visionhdl/examples/using-line-buffer-create-separable-filter.html

R2017b

Version: 1.5

New Features

Bug Fixes

8

Bilateral Filter Block and System Object: Apply a Gaussian filter with
edge preservation
The Bilateral Filter block performs two-dimensional bilateral filtering of the input video. The block
calculates filter coefficients based on the spatial and intensity standard deviations that you specify.

This release also includes an equivalent System object™, visionhdl.BilateralFilter.

Birds-Eye View Block and System Object: Transform a front-facing
camera view to an overhead view
The Birds-Eye View block warps the front-facing camera images to a top-down perspective, according
to physical camera parameters that you specify. The Lane Detection example is updated to use the
new block. See Lane Detection.

This release also includes an equivalent System object, visionhdl.BirdsEyeView.

Line Buffer Block and System Object: Store a sliding window of pixels
for developing custom filter algorithms
The Line Buffer block provides a sliding N-by-1 column vector of pixels from a video stream. The line
memory handles video control signals and edge padding, and is pipelined for high-speed video
designs. To compose a neighborhood for further processing, use the shiftEnable output signal to
store the output columns, including padding, in a shift register.

This release also includes an equivalent System object, visionhdl.LineBuffer.

Cartoon Image Abstraction Example: Extract features using the
Bilateral Filter block
This example show how to emphasize edges in an image by using bilateral filtering and gradient
generation. The original RGB image is quantized to a reduced number of colors, then the cartoon
lines are overlaid on the quantized version of the input image. See Generate Cartoon Images Using
Bilateral Filtering.

R2017b

8-2

https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/bilateralfilter.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.bilateralfilter-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/birdseyeview.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/examples/lane-detection.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.birdseyeview-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/linebuffer.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/ref/visionhdl.linebuffer-system-object.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/examples/generate-cartoon-images-using-bilateral-filtering.html
https://www.mathworks.com/help/releases/R2017b/visionhdl/examples/generate-cartoon-images-using-bilateral-filtering.html

R2017a

Version: 1.4

New Features

Bug Fixes

9

Pixel Stream Aligner: Synchronize two video streams for comparison
or overlay
The Pixel Stream Aligner block synchronizes two pixel streams by delaying one stream to match the
timing of a reference stream. You can use this block to align streams for overlaying, comparing, or
combining two streams, such as in a Gaussian blur operation. Connect the delayed stream as the
reference, and the earlier stream to the pixel and ctrl ports.

This release also includes an equivalent System object, visionhdl.PixelStreamAligner.

Corner Detection Example: Overlay detected corners using the Pixel
Stream Aligner
The Corner Detection example is updated to use the Pixel Stream Aligner block to implement the
overlay of the detected corners onto the original image.

Lane Detection Example: Process 480p video and compute ego lanes
in FPGA
The Lane Detection example now accepts 480p input video, without padding. To accommodate the
larger birds-eye-view frame, the design does not accept new input while processing the current
frame. Input frames that arrive before the previous frame is finished are dropped. The example now
determines which detected lanes are the ego lanes, and removes outliers, in hardware.

R2017a

9-2

https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/visionhdl.pixelstreamaligner-class.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/examples/corner-detection.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/ref/pixelstreamaligner.html
https://www.mathworks.com/help/releases/R2017a/visionhdl/examples/lane-detection.html

R2016b

Version: 1.3

New Features

Bug Fixes

Compatibility Considerations

10

Lane Detection Example: Reference design demonstrating FPGA
acceleration of a lane detection algorithm
This example shows FPGA acceleration of lane-marking detection. The design includes an FPGA-
based candidate generator and a software-based polynomial fitting engine. See Lane Detection.

Measure Timing Block and System Object: Measure video signal
timing from the pixel control bus
Use the Measure Timing block to investigate the blanking intervals between active frames in
streaming video data. This block observes the control signals in the pixel control bus in your model,
and returns the timing characteristics of the frames.

This release also includes an equivalent System object, visionhdl.MeasureTiming.

AXI4-Stream Video Interface: Generate an HDL IP core with an AXI4-
Stream Video interface for your video algorithm (requires HDL Coder)
When your synthesis tool is Xilinx Vivado, HDL Coder™ can generate an IP core with an AXI4-Stream
Video interface for your video algorithm. To generate an IP core, model your video algorithm using
the streaming pixel interface. Then, in the Target platform interface table, map the pixel data and
pixel control bus ports to the AXI4-Stream Video Master or AXI4-Stream Video Slave
interfaces.

You can integrate the generated IP core into the Default video system reference design or your
own custom video reference design.

See Model Design for AXI4-Stream Video Interface Generation.

Computer Vision on Xilinx Zynq-Based Hardware: Generate and verify
vision algorithms on a prototype board connected to a live HDMI video
stream
The Computer Vision System Toolbox Support Package for Xilinx Zynq-Based Hardware (introduced
April 2016) supports verification and prototyping of vision algorithms on Zynq-based hardware.

HDL Coder is required for customizing the algorithms running on the FPGA fabric of the Zynq device.
Embedded Coder® is required for customizing the algorithms running on the ARM® processor of the
Zynq device. Using this support package, you can:

• Target your video processing algorithms to Zynq hardware from Simulink. This includes support
for Vision HDL Toolbox blocks.

• Stream HDMI signals into Simulink to explore designs with real data.
• Generate HDL vision IP cores, using HDL Coder. This includes support for algorithms that use

Vision HDL Toolbox blocks.
• Deploy algorithms and visualize them using HDMI output on a screen.

For additional information, see Computer Vision System Toolbox Support Package for Xilinx Zynq-
Based Hardware.

R2016b

10-2

https://www.mathworks.com/help/releases/R2016b/visionhdl/examples/lane-detection.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/measuretiming.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.measuretiming-class.html
https://www.mathworks.com/help/releases/R2016b/hdlcoder/ug/model-design-for-axi4-stream-video-interface-generation.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/xilinxzynqbasedvision/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/xilinxzynqbasedvision/index.html

Optimized grayscale morphology using Van Herk algorithm
The grayscale morphology blocks and objects now implement the Van Herk algorithm for line, square,
or rectangle structuring elements with more than 8 columns. This algorithm uses fewer hardware
resources, and has higher latency, than the previous comparator tree implementation.

This change affects these blocks and objects:

• Grayscale Closing
• Grayscale Dilation
• Grayscale Erosion
• Grayscale Opening
• visionhdl.GrayscaleClosing
• visionhdl.GrayscaleDilation
• visionhdl.GrayscaleErosion
• visionhdl.GrayscaleOpening

Compatibility Considerations
Due to the latency change, you might need to rebalance parallel path delays in your models that
contain morphology blocks. A best practice is to use the pixel stream control signals to synchronize
parallel paths in your models, rather than inserting a specific number of delays.

The latency of a Van Herk kernel for a neighborhood of m×n pixels is 2m + log2(n). The block
implements this kernel for line, square, or rectangle structuring elements more than 8 pixels wide,
with no pixels set to zero.

The latency of a comparison tree kernel for a neighborhood of m×n pixels is log2(m)+log2(n). The
block implements this kernel for structuring elements smaller than 8 pixels wide, or those with one or
more pixels set to zero.

Simpler way to call System objects
Instead of using the step method to perform the operation defined by a System object, you can call
the object with arguments, as if it were a function. The step method continues to work. This feature
improves the readability of scripts and functions that use many different System objects.

For example, if you create a visionhdl.LookupTable System object named invertgray, then you
call the System object as a function with that name.

invertgray = visionhdl.LookupTable(uint8(linspace(255,0,256));
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = invertgray(pixIn(p),ctrlIn(p));
end

The equivalent operation using the step method is:

invertgray = visionhdl.LookupTable(uint8(linspace(255,0,256));
for p = 1:numPixelsPerFrame
 [pixOut(p),ctrlOut(p)] = step(invertgray,pixIn(p),ctrlIn(p));
end

10-3

https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016b/visionhdl/ref/visionhdl.grayscaleopening-class.html

When the step method has the System object as its only argument, the function equivalent has no
arguments. You must call this function with empty parentheses. For example, step(sysobj) and
sysobj() perform equivalent operations.

R2016b

10-4

R2016a

Version: 1.2

New Features

Bug Fixes

11

ROI Selector: Select a region of interest from a streaming video
source
The new block, ROI Selector, selects a region of interest (ROI) from a video stream. You can specify
one or more regions using input ports or mask parameters. The block returns each new region as
streaming pixel data and corresponding pixelcontrol bus.

This release also includes an equivalent System object, visionhdl.ROISelector.

Grayscale Morphology: Perform dilation, erosion, opening, and closing
operations on grayscale inputs
Perform grayscale morphology using these new blocks and System objects:

• Grayscale Closing
• Grayscale Dilation
• Grayscale Erosion
• Grayscale Opening
• visionhdl.GrayscaleClosing
• visionhdl.GrayscaleDilation
• visionhdl.GrayscaleErosion
• visionhdl.GrayscaleOpening

Larger frame size for statistics computations
The Image Statistics block and visionhdl.ImageStatistics System object now support input
regions up to 644 (16,777,216) pixels in size.

R2016a

11-2

https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/roiselector.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.roiselector-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleclosing.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaledilation.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleerosion.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/grayscaleopening.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleclosing-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaledilation-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleerosion-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.grayscaleopening-class.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/imagestatistics.html
https://www.mathworks.com/help/releases/R2016a/visionhdl/ref/visionhdl.imagestatistics-class.html

R2015b

Version: 1.1

New Features

Bug Fixes

12

Corner Detection Example: Detect intersecting edges with the Harris
algorithm
This example uses the Image Filter block to implement the Harris & Stephens corner detection
algorithm. See “Corner Detection” in Vision HDL Toolbox Examples.

MATLAB Compiler Integration: Generate standalone executables for
System objects
All System objects in Vision HDL Toolbox support generating executables with MATLAB Compiler.

HDL code generation for structure arguments in MATLAB
HDL Coder now supports code generation for structure arguments of functions. For Vision HDL
Toolbox, this simplifies the arguments of functions targeted for HDL code generation. Previously, you
had to flatten the structure into the component control signals.

function [pixOut,hStartOut,hEndOut,vStartOut,vEndOut,validOut] = ...
 HDLTargetedDesign(pixIn,hStartIn,hEndIn,vStartIn,vEndIn,validIn)

With HDL code generation support for structures, the arguments can now include the control signal
structure.

function [pixOut,ctrlOut] = HDLTargetedDesign(pixIn,ctrlIn)

The structure becomes individual control signals in the generated Verilog® or VHDL® code.

Improved line buffer performance
This release improves the HDL performance of blocks and objects that have internal line memory. The
synthesized HDL code for the line buffer now supports HD video at 60fps on the Xilinx Zynq-7000
ZC702 board, and 4k video at 30fps on the Xilinx Zynq-7000 ZC706 board. The following blocks and
System objects use the improved line buffer code:

• Demosaic Interpolator
• Edge Detector
• Image Filter
• Median Filter
• Closing
• Dilation
• Erosion
• Opening

For example, the table shows the R2015b performance of the Demosaic Interpolator, using Gradient-
corrected linear interpolation, and synthesized with Xilinx Vivado for these target boards.

Xilinx Zynq-7000 ZC702 Xilinx Zynq-7000 ZC706
HD input video 4k input video

R2015b

12-2

https://www.mathworks.com/help/releases/R2015b/visionhdl/examples.html

Xilinx Zynq-7000 ZC702 Xilinx Zynq-7000 ZC706
200 MHz 375 MHz
Consumes:

• no DSP48s
• 2.5% of the LUTS
• 1.5% of the slice registers
• 8 BRAMS (4%)

Consumes:

• no DSP48s
• 0.6% of the LUTS
• 0.4% of the slice registers
• 8 BRAMS (1%)

In the previous release, the performance is shown below.

Xilinx Zynq-7000 ZC702 Xilinx Zynq-7000 ZC706
HD input video 4k input video
135 MHz (need 150 MHz for 60 fps) 230 MHz (need 300 MHz for 30 fps)
Consumes:

• no DSP48s
• 2.6% of the LUTS
• 1.5% of the slice registers
• 8 BRAMS (4%)

Consumes:

• no DSP48s
• 0.5% of the LUTS
• 0.3% of the slice registers
• 8 BRAMS (1%)

12-3

R2015a

Version: 1.0

New Features

13

Video synchronization signal controls for handling nonideal timing
and resolution variations
Vision HDL Toolbox blocks and System objects accept and return video data as a serial stream of
pixel data and control signals. The protocol mimics the timing of a video system, including inactive
intervals between frames. Each block or object operates without full knowledge of the image format,
and can tolerate imperfect timing of lines and frames. See Streaming Pixel Interface.

Configurable frame rates and sizes, including 60FPS for high-
definition (1080p) video
To support HD video applications, Vision HDL Toolbox blocks and System objects generate HDL code
capable of running at 150 MHz.

For supported video formats, see the Frame To Pixels block.

Frame-to-pixel and pixel-to-frame conversions to integrate with
frame-based processing capabilities in MATLAB and Simulink
In MATLAB, use the visionhdl.FrameToPixels object to convert framed video data to a stream of
pixels and control signals.

In Simulink, use the Frame To Pixels block to convert framed video data to a stream of pixels and
control signals.

Image processing, video, and computer vision algorithms with a pixel-
streaming architecture, including image enhancement, filtering,
morphology, and statistics
Vision HDL Toolbox blocks and System objects implement hardware-friendly architectures. For the
list of blocks and System objects provided in this product, see HDL-Optimized Algorithm Design.

Implicit on-chip data handling using line memory
Some Vision HDL Toolbox blocks and System objects include internal memory for a small number of
lines as required for the calculation at each image pixel.

The line memory stores kernel size - 1-by-active pixels per line pixels. Set Line buffer size to a
power of two that accommodates active pixels per line.

Support for HDL code generation and real-time verification
Vision HDL Toolbox provides libraries of blocks and System objects that support HDL code
generation. To generate HDL code from these designs, you must have an HDL Coder license. HDL
Coder also enables you to generate scripts and test benches for use with 3rd party HDL simulators.

If you have an HDL Verifier™ license, you can use the FPGA-in-the-loop feature to prototype your
HDL design on an FPGA board. HDL Verifier also enables you to cosimulate a Simulink model with an
HDL design running in a 3rd party simulator.

R2015a

13-2

https://www.mathworks.com/help/releases/R2015a/visionhdl/ug/streaming-pixel-interface.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/frametopixels.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/visionhdl.frametopixels-class.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/ref/frametopixels.html
https://www.mathworks.com/help/releases/R2015a/visionhdl/hdl-optimized-algorithm-design.html

See HDL Code Generation and Verification

13-3

https://www.mathworks.com/help/releases/R2015a/visionhdl/hdl-code-generation-and-verification.html

	R2021a
	External Memory Modeling Examples: Model and deploy streaming video algorithms that require random access to memory (Requires SoC Blockset)
	Multipixel-Multicomponent Streaming: Implement Pixel Stream Aligner, Pixel FIFO, and ROI Selector blocks for high-frame-rate color video
	Computer Vision Toolbox Support Package for Xilinx Zynq-Based Hardware is moved to Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware
	MPSoC Prototyping: Target designs to Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit (requires Vision HDL Toolbox Support Package for Xilinx Zynq-Based Hardware)

	R2020b
	Harris Corner Detector Block and System Object: Detect features using intersecting edges algorithm
	Region of Interest (ROI) Resource Sharing: Share hardware resources and streaming control signals between vertically-aligned regions
	Blob Analysis Example: Detect and label connected components in streaming video
	Multipixel and Multicomponent Streaming: Implement Lookup Table and Pixel Stream Aligner for high-frame-rate or color video

	R2020a
	Corner Detector Block and System Object: Detect features using FAST algorithm
	Line Buffer with No Padding: Specify option to not add padding for blocks that use line buffer memory
	Resizing Example: Downsize an image frame by a specified factor
	Fog Rectification Example: Enhance hazy images to improve clarity
	Stereo Rectification Example: Align pairs of images from stereo cameras
	Multicomponent Multipixel Streaming: Process high-frame-rate or high-resolution color video
	Multipixel Streaming: Perform binary morphology on high-frame-rate or high-resolution video

	R2019b
	Multipixel Streaming: Process high-frame-rate or high-resolution video on FPGA
	External Memory Modeling and Debugging: Simulate and deploy memory interfaces and measure performance (requires SoC Blockset)
	Adaptive Histogram Equalization: Preprocess images to improve contrast
	Acceleration for System objects
	Increased histogram sizes
	Removal of MATLAB Compiler support

	R2019a
	Low-Light Enhancement Example: Enhance low-light color images to improve visibility
	Model and deploy algorithms that use an AXI master external memory interface (requires Computer Vision System Toolbox Support Package for Xilinx Zynq-Based Hardware)
	Horizontal and Vertical Counter Block: Count active lines and pixels of a pixel stream
	Increased kernel size limits for Image Filter block

	R2018b
	Programmable 2-D FIR Coefficients: Use an input port to load filter coefficients at the start of each frame
	Image Pyramid Example: Generate resized pixel streams from an input pixel stream​
	FAST Corner Detection Example: Detect corners using the features-from-accelerated-segment test (FAST) algorithm
	Stereo Disparity Example: Compute disparity between left and right stereo camera images
	External Memory Modeling Examples: Model and deploy algorithms that use an external frame buffer (requires Computer Vision System Toolbox Support Package for Xilinx Zynq-Based Hardware)
	Improved Line Buffer

	R2018a
	Pothole Detection Example: Overlay a centroid marker and text label to identify potholes
	Pixel Stream FIFO Block: Convert bursty video sources to contiguous lines
	Separable Filter Example: Use the Line Buffer block to implement a hardware-efficient custom filter

	R2017b
	Bilateral Filter Block and System Object: Apply a Gaussian filter with edge preservation​
	Birds-Eye View Block and System Object: Transform a front-facing camera view to an overhead view​
	Line Buffer Block and System Object: Store a sliding window of pixels for developing custom filter algorithms
	​Cartoon Image Abstraction Example: Extract features using the Bilateral Filter block​

	R2017a
	Pixel Stream Aligner: Synchronize two video streams for comparison or overlay
	​Corner Detection Example: Overlay detected corners using the Pixel Stream Aligner
	​Lane Detection Example: Process 480p video and compute ego lanes in FPGA

	R2016b
	Lane Detection Example: Reference design demonstrating FPGA acceleration of a lane detection algorithm
	Measure Timing Block and System Object: Measure video signal timing from the pixel control bus
	AXI4-Stream Video Interface: Generate an HDL IP core with an AXI4-Stream Video interface for your video algorithm (requires HDL Coder)
	Computer Vision on Xilinx Zynq-Based Hardware: Generate and verify vision algorithms on a prototype board connected to a live HDMI video stream
	Optimized grayscale morphology using Van Herk algorithm
	Simpler way to call System objects

	R2016a
	ROI Selector: Select a region of interest from a streaming video source
	Grayscale Morphology: Perform dilation, erosion, opening, and closing operations on grayscale inputs
	Larger frame size for statistics computations

	R2015b
	Corner Detection Example: Detect intersecting edges with the Harris algorithm
	MATLAB Compiler Integration: Generate standalone executables for System objects
	HDL code generation for structure arguments in MATLAB
	Improved line buffer performance

	R2015a
	Video synchronization signal controls for handling nonideal timing and resolution variations
	Configurable frame rates and sizes, including 60FPS for high-definition (1080p) video
	Frame-to-pixel and pixel-to-frame conversions to integrate with frame-based processing capabilities in MATLAB and Simulink
	Image processing, video, and computer vision algorithms with a pixel-streaming architecture, including image enhancement, filtering, morphology, and statistics
	Implicit on-chip data handling using line memory
	Support for HDL code generation and real-time verification

